An unsupervised learning method for human activity recognition based on a temporal qualitative model
نویسندگان
چکیده
In this paper, we investigate the problem of monitoring human activities using a network of sensors, including video cameras, in a smart home environment. We introduce an unsupervised method for mining a new kind of qualitative temporally structured activity models from sensor data. We present an application of our method to the recognition of activities of daily living in an elderly care context.
منابع مشابه
An Unsupervised Learning Method for an Attacker Agent in Robot Soccer Competitions Based on the Kohonen Neural Network
RoboCup competition as a great test-bed, has turned to a worldwide popular domains in recent years. The main object of such competitions is to deal with complex behavior of systems whichconsist of multiple autonomous agents. The rich experience of human soccer player can be used as a valuable reference for a robot soccer player. However, because of the differences between real and simulated soc...
متن کاملSupervised and unsupervised classification approaches for human activity recognition using body-mounted sensors
In this paper, the activity recognition problem from 3-d acceleration data measured with body-worn accelerometers is formulated as a problem of multidimensional time series segmentation and classification. More specifically, the proposed approach uses a statistical model based on Multiple Hidden Markov Model Regression (MHMMR) to automatically analyze the human activity. The method takes into a...
متن کاملHigh-Dimensional Unsupervised Active Learning Method
In this work, a hierarchical ensemble of projected clustering algorithm for high-dimensional data is proposed. The basic concept of the algorithm is based on the active learning method (ALM) which is a fuzzy learning scheme, inspired by some behavioral features of human brain functionality. High-dimensional unsupervised active learning method (HUALM) is a clustering algorithm which blurs the da...
متن کاملRecognizing the Emotional State Changes in Human Utterance by a Learning Statistical Method based on Gaussian Mixture Model
Speech is one of the most opulent and instant methods to express emotional characteristics of human beings, which conveys the cognitive and semantic concepts among humans. In this study, a statistical-based method for emotional recognition of speech signals is proposed, and a learning approach is introduced, which is based on the statistical model to classify internal feelings of the utterance....
متن کاملبهبود مدل تفکیککننده منیفلدهای غیرخطی بهمنظور بازشناسی چهره با یک تصویر از هر فرد
Manifold learning is a dimension reduction method for extracting nonlinear structures of high-dimensional data. Many methods have been introduced for this purpose. Most of these methods usually extract a global manifold for data. However, in many real-world problems, there is not only one global manifold, but also additional information about the objects is shared by a large number of manifolds...
متن کامل